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G‑computation and machine 
learning for estimating the causal 
effects of binary exposure statuses 
on binary outcomes
Florent Le Borgne1,2,6, Arthur Chatton1,2,6, Maxime Léger1,3, Rémi Lenain1,4 & 
Yohann Foucher1,5*

In clinical research, there is a growing interest in the use of propensity score‑based methods to 
estimate causal effects. G‑computation is an alternative because of its high statistical power. Machine 
learning is also increasingly used because of its possible robustness to model misspecification. In 
this paper, we aimed to propose an approach that combines machine learning and G‑computation 
when both the outcome and the exposure status are binary and is able to deal with small samples. 
We evaluated the performances of several methods, including penalized logistic regressions, a neural 
network, a support vector machine, boosted classification and regression trees, and a super learner 
through simulations. We proposed six different scenarios characterised by various sample sizes, 
numbers of covariates and relationships between covariates, exposure statuses, and outcomes. 
We have also illustrated the application of these methods, in which they were used to estimate the 
efficacy of barbiturates prescribed during the first 24 h of an episode of intracranial hypertension. In 
the context of GC, for estimating the individual outcome probabilities in two counterfactual worlds, 
we reported that the super learner tended to outperform the other approaches in terms of both 
bias and variance, especially for small sample sizes. The support vector machine performed well, 
but its mean bias was slightly higher than that of the super learner. In the investigated scenarios, 
G‑computation associated with the super learner was a performant method for drawing causal 
inferences, even from small sample sizes.

Machine learning (ML) is a set of mathematical and statistical methods that computer systems use to perform 
tasks without specific instructions. In medical research, there is an increasing interest in these methods for pre-
diction and, more recently, for  causality1 There is a large intersection between these fields since the first step of 
causal modelling consists of predicting the exposure for propensity score (PS)-based  methods2,3 or the outcome 
for G-computation (GC)4,5.

Several recent methodological studies have therefore studied the potential applicability of ML for causal infer-
ence. A large number simulation-based studies have compared several ML methods to obtain  PSs1,6–10. While the 
corresponding PS-based results were very encouraging, GC was compared to PS-based methods in the context 
of classical regression models and showed several advantages in terms of statistical  power11–14 and robustness 
of the estimates regardless of the set of included  covariates11. However, simulation-based studies related to the 
use of ML for predicting outcomes in GC are infrequent. Austin examined the use of ensemble-based methods 
(bagged classification and regression trees (CART), random forests, and boosted CART (BCART)) and con-
cluded that BCART was the highest performing  algorithm15. He also concluded that BCART had a lower bias 
when it was used to impute potential outcomes than when it was used to estimate the PS for inverse probability 
treatment weighting.

In this paper, we studied the performances of GC in combination with different ML algorithms, including a 
super learner (SL), through simulations to estimate causal effects. Many of the previous studies were based on 
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large samples. Therefore, we made sure to include scenarios with small sample sizes. We limited our study to 
case where both the exposure and outcome were binary and to small-medium sample sizes. We also focused on 
ML techniques that are applicable in daily practice, i.e., with reasonable computation times on modern laptops 
or workstations.

Methods
G‑computation. Let Y(1) and Y(0) be the two potential outcomes under the exposure and the non-expo-
sure,  respectively16. Let (Z,X) denote the random variables related to the exposure statuses of individuals ( Z = 1 
for exposed individuals and 0 otherwise) and the k covariates ( X = X1, . . . ,Xk ) measured before exposure, 
respectively. The average causal effect is ACE = E[Y(1)− Y(0)] . It represents the mean difference between the 
outcomes of individuals if they had been exposed or  unexposed17.

Suppose (Yi ,Zi ,Xi) a dataset for analysis consists of n independent realisations of (Y ,Z,X) . The first step of 
GC is to fit f (Y |Z,X) , and this outcome model is frequently referred to as the Q-model5. Once estimated, the 
Q-model aims to predict, for each individual i ( i = 1, . . . , n ), the two potential outcomes under each exposure 
status by maintaining her/his covariates Xi at the observed values and setting Zi to 1 and 0: Ŷi(1) = f̂ (Y |1,Xi) 
and Ŷi(0) = f̂ (Y |0,Xi) . The average causal effect is then estimated by ÂCE = n−1

∑n
i=1

[
Ŷi(1)− Ŷi(0)

]
.

Covariates selection. One of the main differences between prediction and causality is the selection of 
covariates. Knowledge of the causal relationship structure is essential for conducting causal  inference18. This 
knowledge consists of excluding the mediators,  colliders19, and instrumental  variables20,21. Note that a benefit of 
GC over PS-based methods is that it more effectively prevents instrumental variables, which are often included 
in the PS. In this context, the advantages and limits of ML algorithms have been well  described22,23. As noted by 
VanderWeele and  Shpitser24, investigators can identify the causes of exposure statuses or outcomes as potential 
covariates.

Unfortunately, full knowledge of causal relationships is often unavailable. There is a growing literature about 
the best set of covariates to consider, and it recommends including all the covariates that cause the  outcome11,21,25. 
The corresponding data-driven selection procedure for GC is straightforward since it corresponds to the predic-
tors of the Q-model.

ML techniques. In contrast with PS-based methods, which consist of predicting exposure statuses, the 
Q-model must keep the exposure status as one of the predictors. This is not possible for several ML techniques, 
such as random forests, except by estimating f (.) separately for the exposed and unexposed individuals. Never-
theless, this solution is not reasonable for small sample sizes (we have tested it, and the results confirm its defi-
cient performances for n < 1000 ; data not shown). Below, we briefly describe the ML methods that we included 
in our simulations. For more details on these ML techniques, see McNeish for the penalized  methods26, and Bi 
et al. for the other  methods27. We performed all the analyses using R version 3.6.1.

Lasso logistic regression (LLR). L1 regularisation allows for the selection of the predictors. To obtain a flexible 
model, we considered all the possible interactions between the exposure status Z and covariates X . Moreover, 
we used b-splines for the quantitative variables of the vector X . We used the glmnet function included in the 
glmnet package.

Elasticnet logistic regression (ELR). We used the same flexible logistic regression as previously defined, but with 
both the L1 and L2 regularisations (two tuning parameters).

Neural network (NN). We chose a neural network with one hidden layer, as this is probably the most common 
network  architecture3. Its size constitutes the single tuning parameter. We used the nnet function of the nnet 
package.

Support vector machine (SVM). We chose the radial basis function kernel to flex the linear assumption. We 
used the svmRadial function of the kernlab package with two tuning parameters: the cost penalty of misclassifi-
cation and the flexibility of the classification.

Boosted CART (BCART). This ML technique is an ensemble method, that is, a method that averages the per-
centages of events in the terminal nodes of several tree partitions. Four tuning parameters must be chosen: 
the number of trees, the highest level of covariate interactions, the learning rate, and the minimum number of 
observations in the terminal nodes. We used the gbm function included in the gbm package.

For the five methods listed above (LLR, ELR, NN, SVM, and BCART), we chose their respective tuning 
parameters by maximising the average area under the receiver operating characteristic curve (AUC) of tenfold 
cross-validation. We used the caret package with a tuning grid of length equals 20.

Super learner (SL). We included the previous ML techniques in the SL, with the exception of BCART due to the 
resulting computational burden. The SL consists of averaging the predictions obtained from the four approaches 
by using a weighted linear  predictor28. In agreement with our previous choice, we estimated the weights by max-
imising the average AUC of tenfold cross-validation. We used the SuperLearner package.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1435  | https://doi.org/10.1038/s41598-021-81110-0

www.nature.com/scientificreports/

Variance estimation. By bootstrapping the entire  procedure29, one can obtain the standard error and the 
confidence interval of the ACE . Regarding the corresponding computational burden, a compromise consists 
of choosing the tuning parameters based on the entire sample and then using these values in the subsequent 
bootstrap  samples30,31. Moreover, to consider the possible overfitting associated with such ML techniques, we 
performed a bootstrap cross-validation procedure. We trained the ML algorithms from the bootstrap sample, 
while we estimated the ACE from the individuals not included in the bootstrap sample. In this paper, we per-
formed 500 iterations.

Simulation‑based study
Data generation. We considered two main scenarios, as illustrated in Fig. 1 (the related models are in Sup-
plementary Tables S1 and S2). First, we simulated the continuous and binary covariates from X1 to Xk , allowing 
for dependences between the simulated covariate and those already generated. Second, we obtained Z and Y  
with Bernouilli distributions. The logit of the corresponding probabilities equaled the linear functions of X and 
( X,Z).

We choose two contrasting scenarios. We defined a realistic situation (Fig. 1A, Supplementary Table S1) with 
22 correlated covariates at baseline. Nine covariates were included in the outcome model, among which one 

Figure 1.  Directed acyclic graphs associated with the two simulated scenarios. (A) The realistic scenario with 
22 covariates, linear and nonlinear relationships, and one interaction. (B) The simplistic scenario with nine 
covariates, linear relationships, and no interaction.
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covariate interacted with the exposure effect, two effects were step functions, three were quadratic functions, 
and four were linear. In contrast, we defined a simplistic situation (Fig. 1B, Supplementary Table S2) with nine 
independent covariates. Six covariates were included in the outcome model with linear effects and no interaction.

We simulated all the covariates X as variables measured before exposure. We did not consider mediators 
and colliders. As previously stated, the investigator must exclude these variables from the set of covariates. We 
studied different sample sizes: n = 100, 500, and 1000. For each scenario, we randomly generated 10,000 datasets.

Performance criteria. We computed the theoretical ACE by averaging the ACE estimations obtained from 
the univariate logistic models (with Z as the only explanatory variable) fitted based on datasets that were simu-
lated as above, except that Z was generated independently of X11,32. We reported the following criteria (the for-
mulae can be found in the Supplementary Materials): the mean bias (MB), the root mean square error (RMSE), 
the empirical standard deviation (ESD), the asymptotic standard deviation (ASD), the variance estimation bias 
(VEB), the empirical coverage rate of the nominal 95% confidence interval (95% CI), and the statistical power. 
We compared the performances of the previous ML techniques. In addition, we examined the results and com-
pared them with those obtained by a perfectly specified LR, i.e., a LR with the same linear predictor as the one 
defined in the last lines of Supplementary Tables S1 and S2, in which we only estimated the corresponding 
regression coefficients.

Comparison of the ML techniques in terms of bias. Overall results. To evaluate the calibration of the 
ML methods for the simulated data, we added calibration plots of 10 simulated datasets for each combination 
of methods (LLR, ELR, NN, SVM, SL), complexity (simplistic, realistic), and sample size ( n = 100, 500, 1000 ) 
to the Supplementary Materials (Figures S1-10). One can observe an overfitting of the ELR, SVM, and SL when 
n = 100 , and this can be explained by the fact that the number of parameters was too large compared to the 
sample size.

We report the simulation results in Figs. 2, 3 and 4 for the realistic and simplistic scenarios (the numerical 
details can be found in Supplementary Tables S3 and S4). Independent of the sample size and the complexity 
of the relationships between the covariates and the outcome, BCART was associated with a significant level of 
bias, with the MB being higher than 3%.

The impact of the sample size in the realistic situation. To differentiate between the other methods, one can com-
pare the MBs obtained when the relationships between the covariates and outcome are difficult for the analyst 
to manage, i.e., a realistic situation. When the learning support is small ( n = 100), the penalized methods (ELR 
and LLR) and the NN resulted in unacceptable MBs higher than 4%. In contrast, the two remaining methods 
(SVM and SL) were associated with values lower than 1%. With large sample sizes ( n ≥ 500), the four methods 
performed correctly with MBs less than 3%, and the lowest MB was obtained with the SL (MB < 1% for all sam-
ple sizes). To further discriminate between the SVM and SL in this realistic situation, one can notice that the 
MB remained negligible for the SL regardless of the sample size, while for the SVM, the MB increased with the 
sample size (values between 1 and 2% when n ≥ 500).

The impact of the sample size in the simplistic situation. Except when n = 1000 , for which they were outper-
formed by the SL (MB < 1%), the penalized methods were associated with the smallest biases in the simplistic 
situation, with MBs less than 1% regardless of the sample size. The penalized methods were even the only meth-
ods such low values when n = 100 . The NN was the only method with no significant variations according to the 
sample size (i.e., MBs between 1 and 2% for all three sample sizes).

Comparison of the ML techniques in terms of variance. Overall results. Regardless of the scenarios 
and the sample sizes used, one can observe an underestimation of the variance using BCART. Its VEB ranged 
from − 2 to − 56%.

The impact of the sample size in the realistic situation. To differentiate between the other methods, one can first 
consider the smallest sample size ( n =100). The penalized approaches (LLR and ELR) resulted in the highest 
estimations of the variance, with ASDs close to 0.10. The SVM and NN were associated with the smallest vari-
ances, with ASDs close to 0.6 (the VEBs were − 6.4% and 8.8%, respectively). Compared with the two previous 
ML techniques, the SL resulted in a slightly higher ASD at 0.7, but a lower VEB at − 3.7%. For larger sample sizes 
(n ≥ 500 ), the results in terms of variance were close for the four following approaches: LLR, ELR, SVM and SL. 
The NN was associated with an unacceptable overestimation of the variance (VEB = 19.0% and 31.1% for n = 500 
and 1000, respectively).

The differences between the realistic and simplistic situations. The results were similar when the relationships 
between the covariates and the outcome were easier for the analyst to model (i.e., the simplistic situation). How-
ever, one can underline an exception: when n = 100, the NN resulted in an ASD close to those of the penalized 
approaches.

Synthesis of bias and variance in terms of the root mean square error and coverage. Even if 
BCART resulted in a critical level of bias, its RMSEs were reasonable, and this is mainly because of the previ-
ously reported underestimation of the variance. This bias associated with an underestimated variance resulted in 
coverage ranging from 57.2 to 82.2%, and the upper bound of this range is considerably lower than the nominal 
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value of 95%. For the smallest sample size, in both the realistic and simplistic situations, the RMSEs of the penal-
ized methods were among the highest because of their high-level of variance (simplistic situation) or high levels 
of bias (realistic situation).

When n ≥ 500 , the RMSEs of the penalized methods were close to those observed for the ML-based methods 
(NN, SVM and SL). However, for these two approaches, one can observe slightly anti-conservative 95% CIs in 
the realistic situation, because of their slight biases. For the remaining ML-based methods, the RMSEs were 
comparable for the three sample sizes and in the two situations, but the results of the NN should be interpreted 
with caution. Indeed, for n = 100, the NN was associated with a significant bias, but a low variance estimation, 
resulting in a CI of 86.6%, lower than the nominal value of 95%.

As previously reported, the two remaining methods (SL and SVM) were the two ML techniques associated 
with the smallest MBs. For each scenario, the MB of the SL was even lower than the value of SVM. This explains 
why the nominal coverage was slightly higher when using the SL. For instance in the realistic scenario, the cover-
age values associated with the SVM were 92.6%, 93.7% and 91.4% for n =100, 500 and 1000, respectively, while 
they were 93.1%, 95.2% and 94.6% for the SL.

Power of the unbiased methods. We only consider the methods and the scenarios in which the MB were 
lower than 1% due to the problems encountered when interpreting the power in the presence of bias.

The realistic situation. When n = 100 , the SVM and SL had MBs lower than 1%. Of the two methods, the best 
power was achieved by the SVM (36.5% vs 30.8% for the SL). When n = 1000 , the ELR, LLR and SL had MBs 
lower than 1%, and the best power values were achieved by the penalized methods (92.4% for the ELR, 91.5% 
for the LLR and 89.3% for the SL).

Figure 2.  Mean biases (MBs) of G-computation in realistic (A) and simplistic (B) situations with the following 
Q-models: the theoretical logistic regression, elasticnet logistic regression, lasso logistic regression, neural 
network, support vector machine, boosted CART and super learner.
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The simplistic situation. When n =100, only the penalized methods had MBs lower than 1%. The best power 
was obtained by the ELR (20.2% versus 18.0% for the LLR). When n ≥ 500 , we additionally observed MBs lower 
than 1% for the SVM and SL. The penalized methods were always associated with the best powers when com-
pared with those of the two ML techniques with a gain between 1 and 4% depending on the scenarios.

Figure 3.  Empirical and asymptotic standard deviations (ESDs and ASDs, respectively) and variance estimation 
biases (VEBs) of G-computation in realistic (A) and simplistic (B) situations with the following Q-models: the 
theoretical logistic regression, elasticnet logistic regression, lasso logistic regression, neural network, support 
vector machine, boosted CART and super learner.
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ML techniques versus the perfectly specified LR. The performances of the perfectly specified LR 
were better than those of the ML techniques for large sample sizes ( n =1000). One can observe mean bias values 
close to 0%, and variance bias values close to 1%. Nevertheless, when the sample size decreased in the realistic 
situation, the performances of the perfectly specified LR decreased more than those of several ML techniques. 
When n =500, the variance bias associated with the perfectly specified LR was − 2.1% versus − 0.1% for the LLR, 

Figure 4.  Root mean square errors (RMSEs), coverages and powers of G-computation in realistic (A) and 
simplistic (B) situations with the following Q-models: the theoretical logistic regression, elasticnet logistic 
regression, lasso logistic regression, neural network, support vector machine, boosted CART and super learner.
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− 0.5% for SVM and − 1.6% for the SL. When n =100, the variance bias associated with the perfectly specified 
LR was 10.7% versus 0.4% for the LLR, − 3.7% for the SL, and − 6.4% for the SVM. In this latter scenario, these 
three ML techniques resulted in higher statistical powers than the one obtained with the perfectly specified LR.

Application
Context. We applied the methods to evaluate the efficacy of barbiturates prescribed during the first 24 h of 
an episode of intracranial hypertension. The control group included patients without barbiturates at 24 h. One 
can use this treatment to decrease refractory intracranial pressure, but its effectiveness remains debated due to 
the associated adverse events (e.g., haemodynamic impacts or infectious complications).

We used data from the French prospective cohort AtlanREA. We considered patients with intracranial pres-
sures higher than 20 mmHg. We conducted this study following French law relative to non-interventional clinical 
research. Written informed consent was collected. Moreover, the French commission for data protection approved 
the collection (CNIL DR-2013-047). The study was approved by the AtlanREA scientific council (www.atlan rea.
org) and the ethics committee of the French Society of Anesthesia and Intensive Care (SFAR, https ://sfar.org/).

Implementation of the methods. We reduced the set of covariates to the possible causes of the outcome 
without considering the consequences of barbiturate use. We described this selection in detail in Supplementary 
Table S5. For the ML-based methods, we considered all the covariates before exposure and the correspond-
ing interactions with the exposure status. As in the previous simulations, we used b-splines for the continuous 
covariates in the penalized methods. For the investigator-based method, all the outcome causes previously listed 
were included (Supplementary Table S5). The log-linearity assumption for continuous covariates seemed to be 
satisfied. We assumed that there was no interaction because of the absence of clinical relevance.

Results
Table 1 describes the 252 patients. Seventy-four patients were in the treatment group. The outcome was the 
proportion of patients with a favourable Glasgow Outcome Scale (GOS ≤ 3) at three months after admission to 
the intensive care unit. Figure 5 presents the confounder-adjusted estimates. The investigator-based approach 
resulted in a 17.5% decrease in the percentage of patients with favourable 3-month GOS due to barbiturates (95% 
CI from 6.6 to 28.4%). We observed similar results for the ELR and LLR, in terms of both the estimates and the 
95% CIs. The other ML techniques resulted in lower associations, and the one fpr the NN was even nonsignificant 
( ACE =0.4%, 95% CI from − 3.1 to 2.4%). The SL resulted in a small but significant association ( ACE =6.2%, 
95% CI from 0.6% to 11.8%).

For a MacBook pro with a 2.6 GHz Intel Core i7 processor (6 cores), the results were available in 6.5 min for 
the ELR, 16.3 min for the LLR, 7.1 min for the NN, 2.3 min for the BCART, 2.6 min for the SVM, and 7 min 
for the SL.

Discussion
When modelling the outcome model for the GC in the presence of small to medium sample sizes, the results 
of our simulations tended to demonstrate that ML techniques allow for accurate estimations of causal effects. 
Overall, the SL remained robust in all situations and achieved a relevant compromise between both bias reduction 
and variance estimation. In contrast, the performances of the other methods tended to vary more significantly 
according to the complexity of the relationships between the covariates and the outcome (simplistic versus 
realistic situations) and the sample size. Nevertheless, in some situations, the other methods obtained better 
performances than those of the SL. When the sample size was small ( n = 100) in the realistic scenario, the SVM 
had a larger MB but a smaller ASD, with an overall smaller RMSE. In this situation, the two ML techniques (SL 
and SVM) were even associated with lower variances than that of the perfectly specified LR. For instance, the 
variance bias was − 3.7% for the SL versus 10.7% for the perfectly specified LR. One can explain this result by 
the sample-to-sample fluctuation, which can lead to an observed structure that is different from the theoretical 
one. When the sample size was small in the simplistic scenario, the penalized methods (ELR and LLR) had lower 
MBs and similar RMSEs.

The use of ML techniques for causal inference does not preclude human intervention. In addition to the 
choice of the Q-model, we need to exclude the mediators, colliders and instrumental variables by considering the 
underlying causal structure. The use of directed acyclic graphs can help with this  task33. We also emphasise that 
ML techniques do not serve as a cure-all for poor study designs or poor data quality. It is of primary importance 
to investigate the identifiability conditions: the exposure levels correspond to well-defined interventions, the 
corresponding conditional probabilities depend only on the measured covariates, and must be higher than zero. 
These assumptions are consistency, exchangeability, and positivity,  respectively34. In this paper, we focused on 
the estimation of a causal effect given that the identifiability conditions were satisfied. In practice, the predictive 
performance of the Q-model is not sufficient to ensure the absence of bias in the estimation of the causal effect, 
which requires a precise conceptual knowledge of the causal  model35.

Perfect knowledge of the causal structure is impossible to obtain in practice. Therefore, the analyst and the 
investigator construct the Q-model to approximate the causal structure as closely as possible. This may involve 
different steps such as the transformation of the continuous covariates to respect the log-linearity assumption, 
the selection of the covariates, or the choice of relevant interaction(s). While the steps performed by the analyst 
are data-driven and stochastic, they are systematically ignored in the estimation of the effect  variance36. The 
widespread interest in (human-free) ML stems from the possibility of considering a valid post-selection infer-
ence by bootstrapping the entire estimation  procedure29.

http://www.atlanrea.org
http://www.atlanrea.org
https://sfar.org/
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ML techniques are often associated with big data, especially in the field of causal  inference8,37,38. Nevertheless, 
we described the acceptable properties of the SL used in a GC framework to provide causal inference conclu-
sions from databases including several hundred subjects. To obtain this result, we first selected several simple 
ML techniques. We excluded deep learning techniques, such as neural networks with multiple hidden layers. 
Second, we retained the ML techniques that allow for maintaining the exposure as one of the predictors. Third, 
we included two parametric models. Fourth, we used bootstrap cross-validation to prevent overfitting. Fifth, 
we used two ML techniques (NN and SVM) for which there was no selection of predictors. Consequently, all 
covariates were also included in the SL, even those with low contributions due to having no association. The 
removal of confounders in GC can result in confounding bias, which can explain the poor performances of 
the penalized methods in realistic situations. These choices participated in the lower bias of the SL versus that 
of BCART. Our GC results are in agreement with the conclusions of Gruber et al., which concerned PS-based 
 analyses8. Indeed, BCART is an ensemble learning method that avoids cross-validation by a single partitioning 
of the data into training and validation sets. It allows us to reduce the computational time, but it should be used 
with caution for small sample sizes.

Our study suffered from limitations. First, the results from the simulations cannot be generalised to all 
situations. Even if they are consistent with the current literature related to the use of ML in PS-based analyses, 
theoretical arguments are missing for generalisation purposes. Second, one perspective of our work is to improve 
the proposed SL with additional ML techniques or differently tuned techniques. For instance, we fixed the length 
of the tuning grid at 20; a lower value may be acceptable for reducing the computational time. The V-fold cross-
validation is also an important parameter. We fixed V  = 10, as conventionally used. A more appropriate choice 
could also be studied. For example, Naimi and Balzer recommended increasing V  as the sample size  decreases22. 
Third, we focused on the comparison of the ML techniques used in GC. We did not perform comparisons with 
other methods used for causal inference, such as the influence function-based or doubly robust estimators. In 
particular, the double/debiased machine learning and targeted maximum likelihood estimator allow for the unre-
stricted use of data-adaptive  methods38. The principle is to combine the modelling of the outcome and exposure 
mechanisms to obtain an unbiased estimate when at least one of the two models is well-specified. However, such 
doubly robust estimators also have several drawbacks. If both models are misspecified, the estimation is more 
biased than that of a single-robust estimator such as  GC14. The inclusion of a mediator also leads to more bias 
than that of  GC39. Several studies have additionally reported that GC has a lower variance than those of doubly 
robust  estimators11–14. As previously stated, the use of GC also represents a partial solution for preventing the 
selection of instrumental variables since it is independent of the exposure modelling. Fourth, our study focused 

Table 1.  Baseline characteristics of patients according to the treatment group (n = 252) and the GOS at three 
months after the treatment initiation. GOS score was dichotomised into favourable outcomes (good recovery 
or moderate disability) or unfavourable outcomes (severe disability, vegetative state or death). GOS, Glasgow 
outcome Scale; SAP, systolic arterial pressure; HICP, high intracranial pressure; GCS, Glasgow Coma Scale; 
 PaO2, partial arterial pressure of oxygen;  FiO2, fraction of inspired oxygen; SAPS, Simplified Acute Physiology 
Score. *Before HICP.

Overall
(n = 252)

Barbiturates treatment Favourable GOS at three months

No (n = 178) Yes (n = 74) p No (n = 180) Yes (n = 72) p

Female patient (n, %) 89 35.3 58 32.6 31 41.9 0.1592 68 37.8 21 29.2 0.1963

Diabetes (n, %) 17 6.7 15 8.4 2 2.7 0.0989 15 8.3 2 2.8 0.1122

No sological entity: severe trauma (n, %) 124 49.2 95 53.4 29 39.2 0.0403 77 42.8 47 65.3 0.0012

SAP ≤ 90 mmHg before admission (n, %) 56 22.2 36 20.2 20 27.0 0.2368 46 25.6 10 13.9 0.0442

Evacuation of subdural or extradural hematoma (n, %) (*) 41 16.3 33 18.5 8 10.8 0.1301 27 15.0 14 19.4 0.3878

External ventricular drain (n, %) 64 25.4 39 21.9 25 33.8 0.0486 48 26.7 16 22.2 0.4640

Evacuation of cerebral hematoma or lobectomy (n, %) (*) 42 16.7 28 15.7 14 18.9 0.5362 34 18.9 8 11.1 0.1345

Decompressive craniectomy (n, %) (*) 27 10.7 15 8.4 12 16.2 0.0686 21 11.7 6 8.3 0.4396

Blood transfusion before admission (n, %) 34 13.5 25 14.0 9 12.2 0.6903 26 14.4 8 11.1 0.4841

Pneumonia (n, %) (*) 29 11.5 16 9.0 13 17.6 0.0519 19 10.6 10 13.9 0.4538

Osmotherapy (n, %) (*) 112 44.4 75 42.1 37 50.0 0.2525 89 49.4 23 31.9 0.0115

GCS score ≥ 8 (n, %) 62 24.6 39 21.9 23 31.1 0.1237 37 20.6 25 34.7 0.0183

Patient age, years (mean, sd) 47.4 17.4 48.7 17.9 44.1 15.7 0.0565 50.8 16.4 38.7 16.9 0.0000

Haemoglobin, g/dL (mean, sd) 11.8 2.3 11.7 2.2 12.1 2.5 0.1824 11.8 2.4 11.9 1.9 0.7373

Platelets, counts/mm3 (mean, sd) 206.7 78.0 207.4 79.7 205.1 74.2 0.8312 209.0 83.8 200.9 61.1 0.4589

Serum creatinine, mmol/L (mean, sd) 71.1 29.3 71.1 27.6 71.1 33.3 0.9853 72.4 32.6 67.9 18.7 0.2732

Arterial pH (mean, sd) 7.3 0.1 7.3 0.1 7.3 0.1 0.0978 7.3 0.1 7.3 0.1 0.6317

Serum proteins, g/L (mean, sd) 58.2 10.4 57.7 10.6 59.6 9.7 0.1662 58.0 10.7 58.8 9.7 0.5963

Serum urea, mmol/L (mean, sd) 5.0 2.5 5.2 2.7 4.7 1.8 0.1827 5.2 2.3 4.5 2.9 0.0505

PaO2/FiO2 ratio (mean, sd) 302.7 174.0 292.7 154.7 326.6 212.9 0.1595 282.1 172.4 354.2 168.4 0.0028

SAPS II score (mean, sd) 47.6 11.4 47.6 10.7 47.6 12.9 0.9847 49.9 10.8 41.8 10.7 0.0000
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on the situation where both the exposure status and the outcome are binary. The generalisation of our approach 
to other contexts, especially for time-to-event outcomes, represents a short-term goal. Finally, we focused on 
the ACE if the entire sample had been exposed and if it had not been exposed. Additional analyses are needed 
to confirm these results to estimate the average causal effect only for the exposed  individuals40.

In conclusion, the super-learned G-computation is a promising method for causal inference, even with only 
several hundred subjects. The SVM represents an interesting alternative for small sample sizes with one hundred 
subjects when the relationships between the covariates and the outcome are complex. For such a small sample 
size, penalized methods appeared to be the best alternatives when the relationships were simplistic (few covari-
ates with linear relationships and without interactions). The computation times of these ML techniques associ-
ated with GC were reasonable. Note that GC with the SL as the Q-model is implemented in the RISCA package 
(cran.r-project.org, version ≥ 0.82). The user can set the number of splits for cross-validation and the number of 

Figure 5.  Estimations of the confounder-adjusted proportions of patients with favourable GOS among the 
patients treated with barbiturates (A), patients not treated with barbiturates during the first 24 h postadmission 
(B), and the corresponding average causal effects (C).
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parameter combinations to be evaluated. This is a particular solution, but it is not recommended for analysing 
any type of data using the same algorithm. We believe that such ML techniques constitute an opportunity for 
analysts to save some of their time used for repetitive modelling steps and use it for applying prior knowledge 
of the medical field and improving their comprehension of the given data structure.
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