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Abstract

In time-to-event settings, g-computation and doubly robust estimators are based on discrete-time data. However, many

biological processes are evolving continuously over time. In this paper, we extend the g-computation and the doubly

robust standardisation procedures to a continuous-time context. We compare their performance to the well-known

inverse-probability-weighting (IPW) estimator for the estimation of the hazard ratio and restricted mean survival times

difference, using a simulation study. Under a correct model specification, all methods are unbiased, but g-computation

and the doubly robust standardisation are more efficient than inverse probability weighting. We also analyse two real-

world datasets to illustrate the practical implementation of these approaches. We have updated the R package RISCA

to facilitate the use of these methods and their dissemination.
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1 Introduction

Real-world evidence is scientific evidence obtained from data collected outside the context of randomised clinical trials.1

The absence of randomisation complicates the estimation of the marginal causal effect (hereafter referred to merely as causal
effect) of exposure (including treatment or intervention) due to a potential risk of confounding.2 Rosenbaum and Rubin3

introduced the propensity score (PS) as a tool for causal inference in the presence of measured confounders. In a binary
exposure setting, it has been shown that the estimated PS is a balancing score, meaning that conditional on the estimated PS,
the distribution of covariates is similar for exposed and unexposed patients. Following this property, the PS can be used in
four ways to provide estimates of the causal exposure effect: matching, stratification, adjustment, and inverse-probability-
weighting (IPW).4 Stratification leads to residual confounding and adjustment relies on strong modelling assumptions.5,6

Although matching on PS has long been the most popular,7 IPW appears to be less biased and more precise in several
studies.8–10 Moreover, King and Nielsen11 argued for halting the use of PS matching for many reasons, including covariate
imbalance, inefficiency, model dependence, and bias. Indeed, matching on the PS is limited by the exclusion of patients
without a suitable match leading to a non-representative population because of a change in the covariates distribution and a
loss of statistical power.
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Causal effects can also be estimated using the g-computation (GC), a maximum likelihood substitution estimator of the
g-formula.12,13 While IPW is based on exposure modelling, the GC relies on the prediction of the potential outcomes for each
subject under each exposure status. Extensions of GC with time-to-event outcomes were recently proposed in a discrete-time
setting.14–16 Only Breskin et al.16 noted an extension for continuous-time setting, i.e., with infinitely short time intervals,17

but without investigating its properties. Discrete-time models lead to estimates that depend of the length of the intervals
of time, may generate interval censoring, and are often biologically implausible.18 Furthermore, the non-collapsibility of
estimands due to the self-induced selection bias increases with the length of the intervals of time.17

With time-to-event outcomes, the presence of right-censoring and its magnitude is of prime importance since a small
number of observed events due to censoring may impact the estimation of the outcome model involved in the GC. By
contrast, the IPW may perform well as long as the number of exposed patients is sufficient to estimate the PS and the total
sample size is sufficiently large to limit variability in the estimated weights. To overcome potential model misspecifications,
doubly robust estimators (DREs) were proposed. DREs combine both the GC and PS to obtain an unbiased estimate when
at least one of the two working/nuisance models (i.e., a model needed to estimate the target parameter but not estimating it
itself19) is well-specified.20,21 Similarly to GC, current implementation of DREs focus on discrete-time data. Therefore, we
present an extension as proposed by Vansteelandt and Keiding.22

Several studies (see23 and references therein) compared the IPW, GC and DRE in different contexts. They reported a
lower variance for the GC than both the IPW and DRE. Nevertheless, to the best of our knowledge, no study has focused on
time-to-event outcomes.

In the present paper, we aimed to detail the statistical framework for using the GC in time-to-event analyses. We restricted
our developments to time-invariant confounders, and we refer the readers to Wen et al.15 for a recent study of GC with time-
to-event outcomes and time-varying exposure. An equivalent framework for IPW can be found in Hernán et al..24 We also
compared the performances of the GC, IPW and DRS. The rest of this paper is structured as follows. In section 2, we detail
the methods. Section 3 presents the design and findings of a simulation study. In section 4, we propose a practical comparison
with two real-world applications related to treatment evaluations in multiple sclerosis and kidney transplantation. Finally, we
discuss the results and provide practical recommendations to help analysts to choose the appropriate analysis method.

2 Methods

2.1 Notations

Let (Ti, δi, Ai, Li) be the random variables associated with subject i (i = 1, ..., n). n is the sample size, Ti is the participating
time, δi is the censoring indicator (0 if right-censoring and 1 otherwise), Ai is a binary time-invariant exposure initiated
at time T = 0 (1 for exposed subjects and 0 otherwise), and Li = {L1i, ..., Lpi} is the set of the p measured time-
invariant confounders. Let Sa(t) be the survival function of group A = a at time t, and let λa(t) be the corresponding
instantaneous hazard function. Suppose Da is the number of different observed times of event in group A = a. At time
tj (j = 1, ..., Da), the number of events dja and the number of at-risk subjects Yja in group A = a can be defined as
dja =

∑
i:ti=tj

δi1(Ai = a) and Yja =
∑
i:ti≥tj 1(Ai = a).

2.2 Estimands

The hazard ratio (HR) has become the estimand of choice in confounder-adjusted studies with time-to-event outcomes.
However, it has also been contested,25,26 mainly because the time-varying distribution of the baseline characteristics among
the corresponding at-risk populations leads to selection biases. To better understand this pitfall that differs from the concept
of individual time-varying covariate(s), consider the data-generating process illustrating in Figure 1 (panel A). If the analyst
controls for confounding by adjusting or stratifying on L2 and L5, there is no confounding at baseline. Additionally, suppose
that the individual values of the quantitative covariate L4 are constant over the time, and that both the random variables L4

and A are independently associated with a higher risk of death. In this situation, a difference between the average L4 values
among the survivors appears over time (Figure 1, panel B). Then, even when the conditional HR between an exposed and
an unexposed with the same characteristics L is constant over time, the marginal (population) HR varies over time. This is
also referred to the non-collapsibility of the HR.25 Instead of HR, one can estimate the average over time of the different
time-specific HRs: AHR =

∫
[λ1(t)/λ0(t)]f(t)dt.27
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Nevertheless, Aalen et al.25 concluded that it is difficult to draw causal conclusions from such a relative estimand.
Hernán26 advocated the use of the adjusted survival curves and related differences. For instance, the restricted mean survival
time (RMST) allows us to summarise a survival curve for a specific time-window and to compare two curves by looking at
the difference in RMST.28 The RMST difference up to time τ is formally defined as :

∆(τ) =

∫ τ

0

[S1(t)− S0(t)]dt (1)

This value corresponds to the difference in terms of mean event-free time between two groups of exposed and unexposed
individuals followed up to time τ . A further advantage of the RMST difference is its usefulness for public health decision
making.29 Note that other alternatives that might avoid this problem exist, such as the attributable fraction or the number
needed to treat.30

Hereafter, we considered AHR and ∆(τ).

2.3 Weighting on the inverse of propensity score

Formally, the PS is defined by g(Li) = P (Ai = 1|Li), i.e., the probability that subject i is exposed according to her/his
characteristics Li. In practice, analysts often use a logistic regression such that g(Li) = exp(α0 + αLi)/(1 + exp(α0 +

αLi)), where α0 and α are the intercept and the regression coefficient associated with the exposure, respectively. The
individual PSs are then the predictions from this model. Let ωi be the stabilised weight of subject i. Xu et al.31 defined
ωi = AiP (Ai = 1)/g(Li) + (1−Ai)P (Ai = 0)/(1− g(Li)) to obtain a pseudo-population in which the distribution of
covariates is balanced between exposure groups, enabling estimation of the causal effect in the entire population.2 The
use of stabilised weights has been shown to produce a suitable estimate of the variance even when there are subjects
with extremely large weights.4,31 The weighted numbers of events and at-risk subjects at time tj in group A = a are
dωja =

∑
i:ti=tj

ωiδi1(Ai = a) and Y ωja =
∑
i:ti≥tj ωi1(Ai = a), respectively. Cole and Hernán32 proposed a weighted

Kaplan-Meier estimator defined as:

Ŝa(t) =
∏
tj≤t

[
1− dωja/Y ωja

]
(2)

To estimate the corresponding AHR, they suggested the use of a weighted univariate Cox PH model, in which exposure
is the single explanatory variable. We use equation (1) to estimate the corresponding ∆(τ).

2.4 G-computation

Akin to the IPW, the GC involves two steps. The first step consists of estimating the working model Q(A,L).13 When
suitable, it can consist of a proportional hazard (PH) regression: h0(t) exp(γAi + βLi) where h0(t) is the baseline hazard
function at time t, and γ and β are the regression coefficients. Estimates of the cumulative baseline hazard Ĥ0(t) and the
regression coefficients (γ̂, β̂) can be obtained by the joint likelihood approach proposed by Breslow.33 The second step
consists of predicting the counterfactual mean survival function if all subjects would have been exposed (do(A = 1)) or
unexposed (do(A = 0)):

Ŝa(t) = n−1
n∑
i=1

exp
[
− Ĥ0(t)× exp(γ̂ × do(Ai = a) + β̂Li)

]
(3)

Then, ÂHR can be computed as the mean of the individual counterfactual hazard ratios at the observed event times:27

ÂHR =
[ n∑
i=1

δi

]−1 n∑
i=1

δi

[
λ̂1(ti)/λ̂0(ti)

]
, (4)

where λ̂a(t) = −∂ log Ŝa(t)/∂t, which is obtained from equation (3) by numerical differentiation. We use equation (1) to
estimate the corresponding ∆(τ).
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2.5 Doubly robust standardisation

DREs combine Q(A,L) and g(L) to obtain a consistent estimate when at least one of these working models is well-
specified.20,21 In most cases, g(L) is used to updateQ(A,L), such as in Targeted Maximum Likelihood Estimator (TMLE).34

However, it can seem more intuitive to first use the IPW approach to reduce the imbalance between exposure groups and to
then apply GC to control for residual confounding.35 Therefore, we proposed the following doubly robust standardisation
(DRS).22 First, g(L) is fitted to obtain the individual stabilised weights ωi, as defined in the subsection 2.3 to balance the
exposure groups on L. Second, a weighted Q-model Q(A,L) is fitted using the aforementioned weights ωi in the procedure
described in the subsection 2.4 to achieve the double robustness property.

2.6 Identifiability conditions

As for standard regression models, the IPW and the GC require assumptions of non-informative censoring, no measurement
error, no model misspecification, and no interference.36 Three additional assumptions, called identifiability conditions, are
necessary for causal inference. (i) The values of exposure under comparisons correspond to well-defined interventions that, in
turn, correspond to the versions of exposure in the data. (ii) The conditional probability of receiving every value of exposure
depends only on the measured covariates. (iii) The conditional probability of receiving every value of exposure is greater
than zero. These assumptions are known as consistency, conditional exchangeability and positivity, respectively.

3 Simulation study

3.1 Data generation

We generated data in three steps following the data-generating process illustrated in Figure 1 (panel A). (i) We simulated
three covariates (L1 to L3) from a Bernoulli distribution with parameter equal to 0.5 and three covariates (L4 to L6) from a
standard normal distribution. (ii) We generated the exposureA according to a Bernoulli distribution with probability obtained
by the logistic model with the following linear predictor: −0.5 + log(2) · L2 + log(1.5)L3 + log(1.5)L5 + log(2)L6. We
set the intercept to obtain the prevalence of exposed individuals at 50%. (iii) We generated the times-to-event from a
Weibull PH model. We set the scale and shape parameters to 40.0 and 2.0, respectively. Based on a random variable Ui
drawn from a standard uniform distribution, we then computed the time-to-event from a Weibull PH model as 40.0× [(1−
log(1− Ui) exp(−γAi − log(1.3)L1 − log(1.8)L2 − log(1.8)L4 − log(1.3)L5))− 1]−2.0, where γ = log(1.0) under the
null hypothesis or log(1.3) under the alternative hypothesis. We subsequently censored the times-to-event using a uniform
distribution on [0,70] or [0,15], leading to approximately 40% and 90% censored observations, respectively. For each
scenario, we randomly generated 10,000 datasets.

3.2 Performance criteria

To compute the difference in ∆(τ), we defined τ in each dataset as the time at which at least 10% of the individuals in each
group (exposed or unexposed) were still at risk. We computed the theoretical values of the AHR and ∆(τ) by averaging the
estimations obtained, respectively, from univariate Cox PH models (A as the only explanatory covariate) and by equation
(1) where the survival functions were estimated by the Kaplan-Meier estimator, fitted from datasets simulated as above,
except A was simulated independently of L.23 We reported the following criteria: (i) the percentage of datasets without
convergence ; (ii) the bias either as E(θ̂)− θ or 100× E(θ̂/θ − 1), where θ is the estimand of interest; (iii) the mean square
error MSE = E[(θ̂ − θ)2]; (iv) the variance estimation bias V EB = 100× (SD(θ̂)/E[ŜD(θ̂)]− 1), where E(ŜD(•)) is
the asymptotic standard deviation and SD(•) is the empirical standard deviation; (v) the empirical coverage rate of the
nominal 95% confidence interval (CI), defined as the percentage of 95% CIs including θ; (vi) the type I error, defined as the
percentage of times the null hypothesis is rejected when the null hypothesis is true; and (vii) the statistical power, defined as
the percentage of times the null hypothesis is rejected when the alternative hypothesis is true. We obtained the variances by
bootstrap (1000 iterations), as recently recommended by Austin.37 We computed the Monte Carlo standard errors for each
performance measure.38
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3.3 Scenarios

In addition to the two censoring rates and the two effect sizes, we explored three sample sizes: n = 100, 500, and 2000.
When the censoring rate was 90%, we did not investigate the smallest sample size due to the reduced number of events.

In the main simulations, we considered two sets of covariates: L = {L1, L2, L4, L5} the risk factors of the outcome, or
L = {L2, L5} the true confounders. Therefore, we fitted g(L) as a logistic model and Q(A,L) as a Cox PH model.

In a second set of simulations, we aimed to investigate the impact of an omitted confounder on the bias of each method.
In addition to the correct set of covariates L = {L1, L2, L4, L5}, we defined the incorrect sets of covariates as either
Linc = {L1, L4, L5} or {L1, L2, L4} by respectively omitting L2 or L5, two confounders weakly or strongly associated with
both exposure and the outcome. We investigated three scenarios in which the methods used are: (i) g(L) and Q(A,Linc), (ii)
g(Linc) and Q(A,L), and (iii) g(Linc) and Q(A,Linc).

3.4 Software

We performed all the analyses using R version 4.0.3.39 Source code to reproduce the results is available as Supporting
Information on the journal’s web page. To facilitate their use in practice, we have implemented the previous methods in the
R package entitled RISCA (versions ≥ 0.8.1), which is available at cran.r-project.org.

3.5 Results

The Monte Carlo errors were weak, and we did not encounter any convergence problems. Figure 2 presents the results under
the alternative hypotheses for ∆. The results for (i) ∆ under the null hypothesis, and (ii) AHR under the null and alternative
hypotheses were comparable and can be found in the supplementary material available online.

The bias associated with IPW, GC and DRS were similar and close to zero in all scenarios in which we considered all
the risk factors or only the true confounders. Nevertheless for GC, the bias of ∆ under the alternative hypothesis was lower
considering all the risk factors rather than only the true confounders: 0.007 versus 0.111 for n = 2000, respectively, but
only for a censoring rate of 40%. In small sample sizes, the bias was higher for IPW than GC and DRS. For instance, when
n = 100 with a censoring rate of 40% and the risk factors, the bias was 0.100 for GC versus 0.053 and 0.065 for GC and
DRS, respectively.

The GC, when considering all outcome causes, produced the best results in terms of MSE, especially for small sample
sizes. For instance, when n = 100 with a censoring rate of 40%, the MSE related to the AHR was 0.054 for GC versus
0.066 and 0.056 for IPW and DRS, respectively. When considering only true confounders, these values were 0.074, 0.077
and 0.059, respectively.

Regarding the VEB, the results were slightly better with the GC than IPW, except when n = 100. DRS underestimated
the variance of ∆ under the alternative hypothesis, especially with a censoring rate of 40%. However, DRS led to a more
accurate variance of ∆ with a censoring rate of 90%. For the AHR, DRS led to similar VEBs than GC and IPW.

All scenarios broadly respected the nominal coverage value of 95% and the type I error of 5%. The power was the highest
for the GC and DRS, especially when considering all the risk factors, regardless of the scenario.

As expected, omitting a confounder in g(L) or Q(A,L) led to an important bias for IPW and GC, respectively (Figure
3). In contrast, DRS remained unbiased when the set of confounders is complete in at least g(L) or Q(A,L). Interestingly,
the omission in both g(L) and Q(A,L) did not lead to a higher bias for DRS than GC and IPW. The magnitude of the bias
due to the omission of a confounder was similar across methods, ranging from 31.4% to 35.7%, for the different estimands
and the different strengths of association. Similarly, the sample size and the censoring rate did not significantly change the
amplitude of bias (data not shown).

4 Applications

We used data from two studies performed for multiple sclerosis and for kidney transplantation.40,41 We conducted these
studies following the French law relative to clinical noninterventional research. Written informed consent was obtained.
Moreover, the French commission for data protection approved the collection (CNIL decisions DR-2014-327 and 914184).
To guide variable selection, we asked experts which covariates were causes of the exposure or the outcome prognosis to
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define the causal structure.42 We checked the positivity assumption and the considered covariates balance (see supplementary
materials available online). The log-linearity hypothesis of continuous covariates was confirmed in the univariate analysis
if the Bayesian information criterion was not reduced using natural spline transformation compared to the inclusion of the
covariate in its natural scale. In case of violation, we used a natural spline transformation. We also assessed the PH assumption
via the Grambsch-Therneau test at a significance level of 5%. For simplicity, we performed complete case analyses.

4.1 Dimethylfumarate versus Teriflunomide to prevent relapse in multiple sclerosis

With the increasing number of available drugs for preventing relapses in multiple sclerosis and the lack of head-to-head
randomised clinical trials, Laplaud et al.40 aimed to compare Teriflunomide (TRF) and Dimethylfumarate (DMF) using data
from the multicentric cohort OFSEP. We reanalysed the primary outcome, defined as the time-to-first relapse. We presented
the cohort characteristics of 1770 included patients in Table 1: 1057 patients were in the DMF group (59.7%) versus 713 in
the TRF group (40.3%). Approximately 39% of patients (40% in the DMF group versus 38% in the TRF group) had at least
one relapse during follow-up.

We presented the confounders-adjusted results in the left panel of Figure 4. The different set of covariates did not
significantly change the results. For the difference in RMST, the width of the 95% CI was larger for the IPW. For instance,
when we considered all the risk factors, the CI of IPW had a width of 36.6 days versus 33.6 days and 33.2 days for GC and
DRS, respectively.

The conclusion of no significant difference between TRF and DMF was unaffected by the method for the AHR. In
contrast, the IPW led to a protective effect of the TRF compared to DMF in terms of ∆ at two years, while the GC and the
DRS remained consistent with the AHR conclusions. By taking into account the risk factors, the use of IPW concluded to a
gain of 21 days without relapse at two years versus 6.5 days and 7.4 days for GC and DRS, respectively. Owing to the similar
performances of the three methods under the null hypothesis and because unmeasured confounding cannot be an issue here,
we suppose that the difference can be explained by a misspecification of g(L).

4.2 Basiliximab versus Thymoglobulin to prevent post-transplant complications

Amongst non-immunised kidney transplant recipients, one can expect similar rejection risk between Thymoglobulin (ATG)
and Basiliximab (BSX), two possible immunosuppressive drugs proposed as induction therapy. However, ATG may be
associated with higher serious events, especially in the elderly. We aimed to reassess the difference in cardiovascular
complications in ATG versus BSX patients.41 Table 2 describes the 383 included patients from the multicentric DIVAT
cohort: 204 patients were in the BSX group (53.3%) versus 179 in the ATG group (46.7%). Approximately 30% of patients
(29% in the BSX group and 31% in the ATG group) had a least one cardiovascular complication during follow-up. The
median follow-up time was 1.8 years (min: 0.0; max: 8.2).

In the right panel of Figure 4, we presented the confounders-adjusted RMST differences for a cohort followed up to
three years. The results obtained were similarly sensitive to the considered set of covariates. Indeed, the upper (respectively
lower) bound of the 95% CIs of the AHR (respectively ∆) was closer to zero when only the risk factors were considered.
Nevertheless, the conclusion remained identical whatever the method used and the estimand targeted: we were unable to
conclude to a difference in cardiovascular complications between the ATG and BSX patients.

5 Discussion

We aimed to explain and compare the performances of the GC, IPW and DRS for estimating causal effects in time-to-
event analyses with time-invariant confounders. We focused on the average HR and the RMST difference. The results of the
simulations showed that the three methods performed similarly in terms of bias, VEB, coverage rate, and type I error rate.
Nevertheless, both the GC and the DRS outperformed the IPW in terms of statistical power, even when the censoring rate
was high. Furthermore, the simulations showed that Q(A,L) should preferentially include all the risk factors to ensure a
smaller bias due to the self-induced selection. The main advantage of using the GC is the gain in statistical power. DRS is
also an interesting method due to its double robustness property at the cost of a small loss of efficiency.

We have overcome the self-induced selection in HR i.e., the non-collapsibility due to the presence of a cause of the time-to-
event independent of the exposure, by averaging the time-dependant HR. The AHR is furthermore a valid causal estimand
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because it creates a contrast between a function of the potential outcomes under the two exposures A = 1 or A = 0.43

Surprisingly, we reported a higher bias of the RMST difference by GC when we only considered the true confounders.
The difference in survival, such as RMST, is only collapsible in a fully continuous-time context, i.e., with infinitely short
time intervals.17 For the GC, we computed the survival probability for each observed event time leading to small intervals.
Therefore, we could observe slight, but still present, bias due to non-collapsibility when the risk factors were not considered.
We did not observe such bias with the higher censoring rate due to the scarcity of events.25

While the first application to multiple sclerosis highlighted differences between the duo GC/DRS and the IPW, the second
one in kidney transplantation illustrated the importance of the set of covariates to consider. With all risk factors, we concluded
with more confidence that there was not a significant difference between Basiliximab and Thymoglobulin. In contrast, when
using only the true confounders, the bound of the 95% CIs were close to zero. This again highlights the fact that even if a risk
factor is balanced between the exposure groups at baseline, it could become unbalanced over time (as illustrated in Figure 1,
panel B).

Nevertheless, the higher power of the GC is counterbalanced by three points. First, IPW allows us to easily check positivity
near-violations by plotting the individual weights.44 Second, although the lack of positivity directly affects the estimation
of g(L), the GC is also impacted by the resulting lack of support to properly estimate Q(A,L) which can be qualified as
an extrapolation issue. An extension of our work is to explore the robustness of the previous methods in the presence of
such near-violations. Third, the need for bootstrapping to estimate its variance, analytic estimators that are available for the
IPW.45,46 In practice, we must emphasise that bootstrapping the entire estimation procedure has the advantage of valid post-
selection inference.47 Furthermore, data-driven methods for variables selection, such as the super learner, have recently been
developed and may represent a promising perspective when full clinical knowledge is unavailable.48,49 With such a data-
driven covariates selection, the use of GC also represents a partial solution to prevent the selection of instrumental variables
since it is independent of the exposure modelling, but DRS can avoid potential residual confounding due to the omission of
a confounder weakly associated with the outcome in Q(A,L).19 While DREs have been criticised because they can amplify
the bias when the two working models are misspecified,20,50 DRS and TMLEs do not cause such bias amplification.22,51

Some TMLEs have been proposed to estimate either the RMST difference or survival functions.52,53 Unfortunately, they
require the discretisation of the times exacerbating the non-collapsibility of the estimands.17

The methods studied here are not the only available methods to estimate the causal effect. For instance, Conner et al.45

compared the performances of IPW with that of other regression-based methods. Overall, the statistical performances were
similar. However, the advantage of the studied methods compared to other ones is the visualisation of the confounder-adjusted
results in terms of the survival curve or an indicator such as RMST.

Our study has several limitations. First, the results of the simulations and applications are not a theoretical argument
for generalising to all situations. Second, we studied only logistic and Cox PH regression: other working models could be
applied. Keil and Edwards54 proposed a review of possible models for Q(A,L) with a time-to-event outcome. Third, we
considered only a reduced number of covariates, which could explain the abovementioned equivalence between the GC
and the IPW with the extreme censoring rate. Last, we did not consider competing events or time-varying confounders that
require specific estimation methods.55,56

To conclude, by means simulation and two applications on real datasets, this study tended to show the lower power of
the IPW compared to GC and DRS to estimate the causal effect with time-to-event outcomes. All the risk factors should
be considered in GC to overcome the self-induce selection bias. Our work is a continuation of the emerging literature that
questions the near-exclusivity of PS-based methods in causal inference.
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Table 1. Description of the multiple sclerosis cohort according to the treatment group.

Overall (n=1770) TRF (n=713) DMF (n=1057) p-value
n % n % n %

Male recipient 485 27.4 202 28.3 283 26.8 0.4713
Disease modifying therapy before initiation 1004- 56.7 395 55.4 609 57.6 0.3560
Including Interferon 237 369
Including Glatiramer Acetate 158 240
Relapse within the year before initiation 981 55.4 346 48.5 635 60.1 <0.0001<
Relapse within the two years before initiation 1227- 69.3 444 62.3 783 74.1 <0.0001<
Gado. Positive lesion on MRI at baseline 601 34.0 207 29.0 394 37.3 0.0003
Center with more than 50 included patients 1612- 91.1 653 91.6 959 90.7 0.5354
At least one relapse at two-year post-initiation 527 29.8 200 28.1 327 30.9 0.1928

mean sd mean sd mean sd
Patient age at multiple sclerosis onset (years) 31.7 -9.7 32.9 -9.8 30.9 -9.5 <0.0001<
Patient age at initiation (years) 39.3 10.7 41.3 10.8 38.0 10.5 <0.0001<
Disease duration (years) -7.6 -7.4 -8.4 -7.8 -7.1 -7.0 0.0003
EDSS level at initiation -1.7 -1.3 -1.7 -1.3 -1.7 -1.2 0.9885
Number of relapses in the previous year -0.7 -0.8 -0.6 -0.7 -0.8 -0.8 <0.0001<
Number of relapses in the two previous years -1.0 -1.0 -0.9 -0.9 -1.1 -1.0 <0.0001<
No variable have missing data.
Abbreviations: DMF, Dimethylfumarate; EDSS, Expanded Disability Status Scale; Gado, Gadolinium; MRI,
Magnetic resonance imaging; MS, Multiple sclerosis; sd, Standard deviation; and TRF, Teriflunomide.

Table 2. Description of the kidney’s transplantation cohort according to the induction therapy.

Overall (n=383) ATG (n=179) BSX (n=204) p-value
missing n % missing n % missing n %

Male recipient 0 284 74.2 0 137 76.5 0 147 72.1 0.3180
Recurrent causal nephropathy 0 -63 16.4 0 -29 16.2 0 -34 16.7 0.9024
Preemptive transplantation 1 -61 16.0 1 -18 10.1 0 -43 21.1 0.0035
History of diabetes 0 123 32.1 0 -64 35.8 0 -59 28.9 0.1530
History of hypertension 0 327 85.4 0 150 83.8 0 177 86.8 0.4124
History of vascular disease 0 109 28.5 0 -53 29.6 0 -56 27.5 0.6405
History of cardiac disease 0 153 39.9 0 -75 41.9 0 -78 38.2 0.4651
History of cardiovascular disease 0 203 53.0 0 -99 55.3 0 104 51.0 0.3973
History of malignancy 0 -94 24.5 0 -42 23.5 0 -52 25.5 0.6457
History of dyslipidemia 0 220 57.4 0 -92 51.4 0 128 62.7 0.0250
Positive recipient CMV serology 5 230 60.8 4 119 68.0 1 111 54.7 0.0082
Male donor 0 187 48.8 0 -93 52.0 0 -94 46.1 0.2510
ECD donor 1 372 97.4 1 172 96.6 0 200 98.0 0.5244
Use of machine perfusion 12- 208 54.3 6 -86 48.0 6 122 59.8 0.0684
Vascular cause of donor death 0 275 71.8 0 126 70.4 0 149 73.0 0.5655
Donor hypertension 11- 224 60.2 9 103 60.6 2 121 59.9 0.8927
Positive donor CMV serology 0 240 62.7 0 115 64.2 0 125 61.3 0.5486
Positive donor EBV serology 1 370 96.9 1 172 96.6 0 198 97.1 0.8102
HLA-A-B-DR incompatibilities >4 5 -97 25.7 3 -41 23.3 2 -56 27.7 0.3256

mean sd mean sd mean sd
Recipient age (years) 0 70.8 -4.8 0 70.5 -4.8 0 71.0 -4.8 0.3733
Recipient BMI (kg/m2) 3 26.7 -4.0 3 26.9 -4.2 0 26.5 -3.9 0.2796
Duration on waiting list (months) 16- 16.5 19.0 11- 17.9 18.9 5 15.4 19.1 0.2082
Donor age (years) 1 72.7 -8.8 1 72.1 10.0 0 73.1 -7.5 0.2739
Donor creatininemia (µmol/L) 1 82.9 39.5 0 85.5 41.0 1 80.7 38.0 0.2331
Cold ischemia time (hours) 3 15.6 -5.0 1 15.9 -5.2 2 15.3 -4.8 0.2820
Abbreviations: ATG, Thymoglobulin; BMI, Body mass index; BSX, Basiliximab; CMV, Cytomegalovirus; EBV, Epstein-Barr virus;
ECD, Expanded criteria donor; HLA, Human leucocyte antigen; and sd, Standard deviation.
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Figure 1. (A) Causal diagram illustrating the data-generating process. (B) Distribution of the baseline covariate L4 over time
according to exposure status in a simulated population of one million people. L4 is moderately associated (HR = 1.8) with the
outcome.
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Figure 3. Relative bias (%) of the g-computation (GC), inverse probability weighting (IPW) and Doubly Robust Standardisation
(DRS) with an ommitted confounder to estimate: A - the log average hazard ratio; B - the restricted mean survival times difference.
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